TRANSPORT OF HEAT OR MASS IN A DISPERSED FLOW
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A rigorous derivation of the equations of heat transport is carried out by averaging over an en-
semble for a system consisting of a continuous medium with particles imbedded in it,and the
closure problem for these equations is discussed.

A usual situation in engineering practice is one where the linear scale L of the measurements of the sig-
nificant quantities characterizing the mean "macroscopic" properties of a dispersed medium and of the trans-
port processes in it is considerably larger than the scale I of the internal structure of the medium. In this
case, it is natural to consider the transport of heat or mass as occurring in some homogeneous continuum (or
in several homogeneous continua coexisting simultaneously at each point of space occupied by the medium)
which is an abstraction of the "microscopic" features of transport in the neighborhood of individual particles.
Two interrelated problems arise as a result: the derivation of effective transport equations in such continua
and their closure, i.e., the representation of all terms appearing in them in the form of functions of the un-
known variables in these equations and of quantities describing the structure of the medium and the physical
properties of its phases. Similar problems also arise in the formulation of rheological models for dispersed
media, in studies of stress and strain fields in composite materials, and in the analysis of electromagnetic
fields in dispersed conductors and dielectrics.

The first problem is gotten around most often by a priori postulation of equations for one-dimensional
transport in dispersed and other heterogeneous media [i-4] or for their three-dimensional analogs [5]. Such
an approach leaves open questions about the adequacy of the equations or the conditions for their applicability
and questions about the method for calculating the coefficients appearing in them, which can only be obtained
experimentally in this situation (for example, see the review in [6]). Sometimes such equations are formulated
by averaging the local equations of thermal conductivity or diffusion valid in the separate phases over repre-
sentative volumes of the medium [7-10]. In this case also, however, the derivation of the equations contains
only the most general indications of the method for determination of the unknown terms in them; besides, it is
necessary to assume additional ergodic hypotheses about the equivalence of averaging over volume and averag-
ing over a surface, etc., the validity of which is not obvious beforehand. Therefore, the rigorous derivation,
justification, and analysis of macroscopic transport equationg, including those widely used in practice, re-
main an unsolved problem thus far. The powerful apparatus of ensemble averaging is drawn on for a study of
thig problem in the following.

We consider a dispersed medium consisting of a continuous phase and a dispersed phase of particles
distributed in it. In the general case, both phases of the medium are mobile and its concentration is not nec-
essarily small. For simplicity,the particles are assumed to be identical spheres; generalization to a system
of varying particles presents no fundamental difficulties but leads to more cumbersome computations. Ex-
amples of such media are suspensions and emulsions, fluidized and fixed beds of spherical particles, granular
composite materials, etc.

Within the continuous and dispersed phases, the usual equations of convective thermal conductivity are
valid and can be written in the form

0 d
Cl—+V -—|T=—vQ--H, Q:=—AyT,
(at 6r\) v Q Y (1)
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where the "detailed" thermal conductivity and heat capacity per unit volume are determined through phase
parameters by means of the expressions

A= 0+ (1—0) Ay, C=0c, (1—0)c,, (@)

where 6 is a structure function which is equal to one in the spaces between particles and to zero inside them,
The problem involves averaging of (1) in order to obtain equations for the mean temperatures of the phases
considered as homogeneous continuous media.

According to the general Gibbs method, the most proper averaging is over an ensemble of possible states
of the dispersed medium where in the most general case the states are distinguished both by the positions of
the centers of the particles and by their translational and rotational velocities. Correspondingly, the detailed
fields T, V, and other detailed functions depend not only on coordinates and time, but also on the state realized.
In first approximation, the dependence on velocities can be neglected by considering states corresponding to
an identical set of vectors r(i), but with different dr(ly/ dt, for example, as indistinguishable.f We then arrive
at the concept of an ensemble of configurations, the phase space of which is formed by components of the vectors
r(D) and has the dimensionality 3N. In accordance with the usual ergodic conditions, we assume that ensemble
means coincide with the quantities which are obtained by averaging over volumes containing a sufficiently large
number of particles.

We introduce the distribution function ¢(t, Ay) for the configuration Ay, which is a probability density
in phase space, and also the conditional distribution functions ¢(t, Ax_¢|r') and @(t, Ax_slr', r'") for configura-
tions in which the positions r' and r'' for one or two particles are fixed, The corresponding unconditional and
conditional means for any detailed function G(t, rIAN) are then written in the form

glt,n=(G)=[G( rdn) o(, Ay) dAx,
gt i) = (G)*= [ G(t, ridx) 9(t, Ax—rlr) dAn_i, @®)
g, rr', 1) = (G ** :S' G(t, rlAx) o(f, An—slr’, )dAn_»,
where the integrations are performed over phase spaces corresponding to ensembles of N, N—1, and N—2 par-
ticles. In view of the obvious equalities
¢, AN)=9q(, ') ¢, An_ilr'),
o Av—iity =g, ©iIt') o (¢, An—2ft’, 1),

where ¢(t, r') and ¢(t, r'|r'') are the unconditional (unary) and conditional (binary) distribution functions for a
single particle, we have from Egs. (3)

g, n= Sg* {t, rir)o(t, rydr,
(4)
gt (¢, rr') = j g (@, i, i) o, rir)dr.

Equations like (3) and (4) can also be written for configurations in which the locations of more than two par-
ticles are fixed. We emphasize that all distribution functions introduced are normalized to unity in their region
of definition.

The means in Egs, (3) refer to the dispersed medium as a whole, We introduce other means related to
the continuous and dispersed phases:

egy=(0G), pgy=<(1—0)G), eg,+pg, =g,
s*gé‘: (BG)* p*gr=((1—0)G )% S*gg‘—i— prg¥=g*, « (5)
p=1—g,e=(0), o*=1—¢% e*=(0>*
We obtain a representation for the means over the dispersed phase needed in the following. For this pur-

pose, we write

T This assumption is trivial for a system with fixed particles, but for the general case of a moving system it
is a definite hypothesis deserving further investigation.
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N
8(rldy) =1 —-2 (@ — r—r@}).
=1

‘Here, n is a Heaviside function, and the summation is carried out over all particles. Using this expression
and the concept of static indistinguishability of the particles, we have from Egs. (3)~(5)

(1—8G>=N{(nG>=N S‘ N —ir—r') g*@t, rrYo @, r')dr =N5 g ¢, rr) @, rydr, r—r" <a.

The integration in the last integral is carried out over values of the radius vector r' of the center of a particle
such that the point r is within that particle. Neglecting terms of the order of /L £ 1/L<« 1, one can replace
@(t, r') by the first term of its expansion in a Taylor series about the point r and apply the parallel transport
operator to the vector X=r—r' for the determination of g*. We then obtain

((1—8)G)>=No{t, 1) j g*(t, r 4 xir) dx. (6)

x<a

In a similar fashion, an expression is obtained for the conditional means over the dispersed phase. We have

((1—8G)*=N j‘q;(t, r+xlr) g* (¢, rir, 1 - x)dx. (7

x<a
The integration here is carried out over the volume of a particle with a center at the point r (see Fig. 1).

Equations (6) and (7) make it possible to give a rigorous definition of the quantities p and p * introduced
in Eqgs. (5), for which it is sufficient to set G=1. In the particular case of completely random arrangement of
particles, the binary distribution function can be approximated by the relation

@, rr)=9¢(, )n2a—r—1"). (8)

In this case the integration in Eq. (7) is actually performed only over the portion of the volume of a particle
with its center at r which is shaded in Fig. 1. We then obtain for p and p*

ol(f, r) = g— na®Ne (¢, r) = ;— na’n (¢, 0, %)

P* (t) rlgr’) = p(t’ l') G(E)’ g = ;r_"r,‘/av

where ¢ is the ratio between the shaded volume in Fig. 1 and the volume of a sphere of radius a; its dependence
on ¢ is shown in Fig. 2.

By definition, ensemble distribution functions are independent of r and therefore the averaging operation
and differentiation with respect to r commute, Further, the time scale for detailed functions is determined by
processes at the level of individual particles and is therefore much less than the time scale for the distribution
functions, the variations.of which are connected with regrouping of a large number of particles,t Therefore,
to an accuracy of the order of quantities which are greater than the small ratio of the time scales specified,
the averaging operation is also interchangeable with differentiation with respect to time, i.e.,

o 0G d G>. o G\ _ 0

SN == (G,

—N=-- (G>.
N o 7 or N ot/ o 6’ (10)
Similar commutation relations can also be written for the conditional means defined in Eqgs. (3).

T This argument is invalid for systems with fixed particles and steady-state flow of the continuous phase where

both scales tend toward infinity. In this case, however, ¢(t, r) is generally independent of t and the second equa-
tion in (10} is satisfied rigorously.

Fig. 1. Sketch illustrating integration Fig. 2. Dependence of ¢
in Eqgs. (6) and (7) and the calculation ontg.
of the funetion o(£) from Eq. (9).
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We now average Eq. (1) multiplied by ¢ and by 1—60 with.respect to the unconditional distribution func-
tion. Using Eqs. (2)-(5) and (10), and introducing the pulsations 7, 7;. and v, v, of the detailed fields T' and
V' with respect to their mean values in the respective phases, we obtain

o 0, gyt
) 7o =0 - COTV' 5 —yq + C (1—0)vQ ) + chy,

0
(‘5;“07,,

(11)
pc i'vi Ty =—C i((l——ﬁ)T’V’)-—-((l——e) Q h
1(at“f‘iar)1 lar A V>+941-

Equations (11) describe heat transport in flows of the continuous and dispersed phases where the trans-
port equation for the medium as a whole is the sum of Eqs. (11). On the left sides appear the rates of change
of the heat content of the materials in the phases per unit volume of the medium, including convective heat
transport by the mean flow, The first terms on the right sides are the divergences of the additional heat flows
resulting from pulsational motion. In their significance, these "pulsational" flows are analogous, for example,
to Reynolds stresses inthe hydromechanics of turbulent flows, but their nature may be different depending-
upon the detailed structure of the medium and the pulsational mechanism. Thus, their occurrence may be as-
sociated with turbulence in the dispersed medium, with nonuniformity of local fluid velocity in the porous space
of a granular bed, etc. The vector ¢ describes the "regular" mean heat flux in the medium resulting from mo-
lecular thermal conductivity including the perturbing effect of the dispersed particles on the temperature field
in a continuous phase with a different thermal conductivity, and the quantity <<(1—8)VQ> is the "regular"
heat exchange between phases, Finally, the last terms on the right sides of Egs. (11) describe the mean in-
tensity of heat sources in the phase materials.t

For the determinacy of Egs. (11), it is first of all necessary that the velocities v and v, be known as well
as p and other quantities characterizing the structure of the medium. In the general case, all these quantities
are functions of t and r which are determined from a solution of the independent problem of the motion of the
dispersed medium or which are assigned a priori; they can be considered as known quantities in the following.
All the remaining terms on the right sides of Egs. (11) must be represented in the form of functions of the un-
known variables 7, and 7, and also of the parameters characterizing the structure of the medium and the physi-
cal properties of the phases, Tt is apparent that the physical models required for such representation of the
pulsational and regular terms are quite different in nature and must be considered separately. In the following,
we limit ourselves to the analysis of the regular terms, neglecting heat sources for simplicity and assuming
that pulsational thermal fluxes are small. The latter is completely valid in the very important case where the
Péclet number, which is based on the characteristic particle size a and the mean velocity |v,—v,] of the flow
around a particle, is small in comparison with one. In this case, we have in a coordinate system moving with
a velocity v instead of Eqgs. (11)

or, 0
o~ = —Va+ (=0 V), po, — b =—((1—8)vQ). (12)
Using Eq. (5) and the definition of Q in Eq. (1), we have
q=—{AVT ) = — Ayt — (by —2g) (1 —O) VT . (13)

Thus, all the unknown terms in Eqgs. (12) are means over the dispersed phase, which can be written in
the form (6). In particular, using the Gaussian formula, we obtain from Eq. (6)

((1—0)yT>=n(, 1 (ﬁ (¢, r- xir) ndx,
#ea (14)

((1—8)vQ> =nf, n gflq*(t, r -+ x|r) ndx,

X==a

where the integration is performed over the surface of a particle with its center at r. Consequently, Eqs. (12)
will be closed if the mean temperature and the mean heat flux on the surface of an individual particle are known.

In order to determine the quantities mentioned, it is necessary to consider the problem of the mean per-
turbations introduced into the mean temperature fields of the phases by a test particle with a fixed location in
the system, It is clear that the mean temperature within a particle satisfies the usual one-phase equation of

t Note that h, and h; also contain terms depending on T' in the case where H depends on temperature, and this
dependence is nonlinear,
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thermal conductivity. Equations for the fields 7 and 7} outside a particle are obtained after averaging Eq.
(1) multiplied by 8 or 1—9 ; proceeding as in the derivation of Egs. (11) and (12), for small Péclet numbers and
H =0, we obtain in place of Eqgs. (12) and (13)

6‘6* .
g%y —5— = —Vq* -+ ((1—0) ya > %,
(15)
" a‘ff‘ « . * . , %
p*e —— == (L =0 VQ)>* ¢* = — Ayt —(Ay— 1) ((1—O)vT ) *

The usual conditions for continuity of temperature and of the normal component of the heat flux must be satis-
fied at the surface of the test particle. The conditional means over the dispersed phase appearinginEgs. (15)
are expressed through conditional means of higher order in accordance with Eq. (7).

The determination of the latter means requires a solution of the problem of the mean perturbations in-
troduced by two fixed particles, which can easily be formulated in analogy with the problem of a test particle.
In this problem, terms appear which are expressed through the temperature fields averaged over configura-
tions in which the positions of three particles are known beforehand. Continuing such a process, we obtain an
infinite (N>> 1) chain of interrelated problems for many particles. It does not seem possible to solve all these
problems, and there then arises the problem of cutoff and closure of this chain, which is completely analogous
to such problems in the statistical physics of fluids or in the statistical theory of turbulence.

The simplest version of closure, which was discussed in [10] in particular, was based on the following
considerations. Because of the linearity of the equations of thermal conductivity, the quantities ¢ (1—0)VT )
and < (1—0)VQ ) must depend linearly on the temperatures 7, and 7. The first of these quantities is a vector
and, consequently, must be expressed in the form of a linear combination of the vectors V7 ; and V7,, which
merely define selected directions in the system. The second quantity, which describes the mean heat trans-
fer between phases, must go to zero under steady-state conditions where 7 ,=7,. Considering further that both
these quantities are proportional to the concentration of the dispersed phase, we then obtain the relations

((L=0)VyT > = oF (y15, v}y ((1—08)vQ ) = 0D (14, T, (16)

where F and ® are certain previously unknown functionals which are linear with respect to their arguments.
The hypothesis leading to the closure of the test-particle problem consists of an assumption that the conditional
means { (1 —0)v7T »>* and ((1—06)yQ>* are expressed through 7}, 7%, and the volumetric concentration p*

of the dispersed phase in the neighborhood of the test particle by means of the same functionals Fand ¢,1i.e.,

CA=8)YT ) * = 0*F (y75, V7)), ((1—0)yQ) *= "D (1, 7). (17

The actual solution of the test~-particle problem which is closed by Egs. (17) and the a posteriori deter-
mination of the form of these functionals from a-comparison of Egs. (16) and (14) is extremely laborious in
the general case but can be carried out in various particular situations. An example of the solution of this prob-
lem under steady-state conditions for a medium with an arbitrary particle concentration as well as a study of
the nonsteady~state problem for dilute dispersed media will be discussed in subsequent papers.

NOTATION

Ay, configuration of a system of N particles; a, particle radius; C, c, heat capacities per unit volume;
F, functional in Eqgs. (16) and (17); G, g, arbitrary detailed function and its mean; H, h, intensities of internal
heat sources; L, I, macroscopic and microscopic linear scales; N, total number of particles; n, calculated
particle concentration; n, unit normal vector; Q, q, thermal fluxes; r{i), radius vector of the center of the i-th
particle; T, local temperature; V, v, local and mean velocities; € , volumetric concentration of continuous phase;
1, Heaviside function; 6 , structure function; A, A, thermal conductivities; £, variable in Eq. (9); p, volumetric
concentration of dispersed phase; o, function in Eq. (9); 7, mean temperature; ®, functional in Egs. (16) and
(17); ¢, distribution function. Indices: 0, 1, continuous and dispersed phases, respectively; asterisk, condi-
tional means. )
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