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A r igorous derivation of the equations of heat t ranspor t  is ca r r i ed  out by averaging over  an en- 
semble for  a sys tem consist ing of a continuous medium with part icles  imbedded in it ,and the 
c losure  problem for  these equations is discussed.  

A usual situation in engineering pract ice  is one where the l inear scale  L of the measurements  of the sig-  
nificant quantities charac te r iz ing  the mean "macroscopic"  proper t ies  of a d ispersed  medium and of the t r a n s -  
port  p rocesses  in it is considerably  l a rge r  than the scale l of the internal s t ruc ture  of the medium. In this 
case,  it is natural  to consider  the t r anspor t  of heat or  mass  as occurr ing  in some homogeneous continuum (or 
in severa l  homogeneous continua coexist ing simultaneously at each point of space occupied by the medium} 
which is an abst ract ion of the "microscopic"  features  of t ranspor t  in the neighborhood of individual par t ic les .  
Two interre la ted problems ar i se  as a result :  the derivation of effective t ranspor t  equations in such continua 
and their  c losure,  i.e., the representa t ion of all t e rms  appearing in them in the form of functions of the un- 
known variables  in these equations and of quantities descr ibing the s t ruc ture  of the medium and the physical  
proper t ies  of its phases.  Similar  problems also a r i se  in the formulation of rheological models for d ispersed 
media, in studies of s t r e s s  and s t ra in  fields in composite mater ia ls ,  and in the analysis of e lect romagnet ic  
fields in dispersed conductors  and d ie lec t r ics .  

The f i rs t  problem is gotten around most  often by a pr ior i  postulation of equations for one-dimenslonal  
t ranspor t  in d ispersed and other heterogeneous media [1-4] or  fo r  their  three-d imensional  analogs [5]. Such 
an approach leaves open questions about the adequacy of the equations or  the conditions for their  applicability 
and questions about the method for calculating the coefficients appearing in them, which can only be obtained 
experimental ly  in this situation (for example, see the review in [6]). Sometimes such equations are  formulated 
by averaging the local equations of thermal  conductivity or diffusion valid in the separa te  phases over r e p r e -  
sentative volumes of the medium [7-10]. In this case also, however, the derivation of the equations contains 
only the most  general  indications of the method for  determination of the unknown t e rms  in them; besides, it is 
neces sa ry  to assume additional ergodic hypotheses about the equivalence Of averaging over volume and averag-  
ing over  a surface,  etc., the validity of which is not obvious beforehand. Therefore ,  the r igorous derivation, 
justification, and analysis  of macroscopic  t ranspor t  equations, including those widely used in pract ice,  r e -  
main an unsolved problem thus far .  The powerful apparatus of ensemble averaging is drawn on for  a study of 
this problem in the following. 

We consider  a d ispersed medium consist ing of a continuous phase and a d ispersed phase of part icles 
distributed in it. In the general  case, both phases of the medium are mobile and its concentrat ion is not nec-  
essa r i ly  small .  For  simplicity,  the par t ic les  are  assumed to be identical spheres;  general izat ion to a sys tem 
of varying part icles  presents  no fundamental difficulties but leads to more  cumbersome computations.  Ex-  
amples of such media are  suspensions and emulsions,  fluidized and fixed beds of spherical  part icles ,  granular  
composi te  mater ia ls ,  etc. 

Within the continuous and d ispersed  phases, the usual equations of convective thermal  conductivity are  
valid and can be writ ten in the form 

(0 
C - ~ - m V  T = - - v Q + H ,  Q : : - - A v T ,  (1) 
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where  the "detai led" t h e r m a l  conductivity and heat  capaci ty  pe r  unit vo lume a re  de te rmined  through phase 
p a r a m e t e r s  by means  of the expres s ions  

A = 0Z 0 + (I - -  0) ~u, C ---- 0c 0 + (1 - -  0) c 1 , (2) 

where  0 is a s t ruc tu re  function whieh is equal to one in the spaces  between par t i c les  and to ze ro  inside them.  
The p rob lem involves averag ing  of (1) in o rde r  to obtain equations fo r  the mean  t e m p e r a t u r e s  of the phases  
cons idered  as  homogeneous continuous media .  

According to the genera l  Gibbs method,  the mos t  p rope r  averaging  is ove r  an ensemble  of poss ib le  s ta tes  
of the d i spe r sed  medium where  in the mos t  genera l  c a se  the s ta tes  a re  dist inguished both by the posi t ions of 
the cen te r s  of the pa r t i c les  and by the i r  t rans la t iona l  and rotat ional  ve loc i t i es .  Correspondingly,  the detai led 
f ields T, V, and o ther  detai led functions depend not only on coordinates  and t ime,  but also on the s ta te  rea l ized .  
In f i r s t  approximat ion,  the dependence on veloci t ies  can be neglected by consider ing s ta tes  cor responding  to 
an identical  set  of vec t o r s  r (i), but with different dr(i)/dt,  for  example ,  as indlst inguishable.~ We then a r r i v e  
at  the concept  of an ensemble  of configurat ions,  the phase  space of which is f o r m e d  by components  of the vec to r s  
r(i) and has the dimensional i ty  3N. In accordance  with the usual  ergodic  conditions, we a s s u m e  that ensemble  
means  eolneide with the quanti t ies which a r e  obtained by averag ing  over  vo lumes  containing a sufficiently la rge  
number  of pa r t i c l e s .  

We introduce the dis t r ibut ion function ~0(t, A N) for  the configurat ion AN, which is a probabi l i ty  density 
in phase  space,  and also the conditional d is t r ibut ion functions ~o(t, AN_ 1 [ r ' )  and ~o(t, AN_ 2 Jr', r " )  for  conf igura-  
t ions in which the posi t ions r '  and r "  fo r  one o r  two par t i c les  a r e  fixed. The cor responding  unconditional and 
condltionM means  for  any detai led function G(t, r [A N) a r e  then wr i t ten  in the  f o r m  

(t, r) -- < G ) ---- S G (t, rlAN) q~ (t, A~v) dAs,  g 

g*(t, r[r') = ( G > *---- ~ G(t, r!A,v) , ( t ,  A~:-Hr') dAN-! ,  O) 

g** (t, rir', r") < 0 > ** = S  G (t: r!A~,) r (t, A~_2/r', r")dA~-2, 

where  the in tegrat ions  a r e  p e r f o r m e d  ove r  phase  spaces  cor responding  to ensembles  of N, N - l ,  and N - 2  p a r -  
t i c l e s .  In view of the obvious equal i t ies  

~(t, A~)=  ~0(t, r ' )~( t ,  AN-,[r'), 

q~(t, AN--l!r')----q~(t, r"ir' ) qD(t, AN-2!r', r"), 

where  ~o(t, r ' )  and 9( t ,  r '  I t " )  a r e  the unconditional (unary) and conditional (binary) dis t r ibut ion functions for  a 
single par t ic le ,  we have f r o m  Eqs.  (3) 

(t, r) = S g* (t, rlr') cp (t, r') dr', g 
(4) 

g* (t, rlr') = S g** (t, rir', r") q~ (t, r"]r') dr". 

Equations like (3) and (4) can also be wri t ten  for  configurat ions in which the locations of m o r e  than two p a r -  
t ic les  a r e  f ixed.  We emphas ize  that al l  d is t r ibut ion functions introduced a re  normal ized  to unity in the i r  region 
of definition. 

The  means  in Eqs.  (3) r e f e r  to the d i spe r sed  medium as a whole.  We introduce o ther  means  re la ted  to 
the continuous and d i spe r sed  phases :  

eg o = < O G > ,  P g l = < ( 1 - - O )  G>, eg o + p g l ~ g ,  

e*g~= < OG > *, 9*g~ =~ < (1 - -0 )G > *, e * g * + p * g ~ - g * ,  (5) 

p =  l - - e ,  e = ( 0 > ,  9 " =  l - - e* ,  e*=  ( 0 > * .  

We obtain a r ep resen ta t ion  for  the means  over  the d i spe r sed  phase needed in the following. F o r  this pu r -  
pose,  we wr i te  

This  assumpt ion  is t r iv ia l  for  a s y s t e m  with fixed pa r t i c l e s ,  but for  the genera l  case  of a moving sy s t em it 
is a definite hypothesis  deserv ing  fu r the r  invest igat ion.  
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0 (rlA~) = I - - ~  ~ (a - -  I r - -  r(~ ). 
i=1  

H e r e ,  ~ is a Heavis ide  funct ion,  and the s u m m a t i o n  is c a r r i e d  out over  all  p a r t i c l e s .  Using this  e x p r e s s i o n  
and the concept  of s t a t i c  ind is t inguishabi l i ty  of the  p a r t i c l e s ,  we have f r o m  Eqs .  (3)-(5) 

< (1 - -  0) G ) = N < ~IG > = N .f tl (a - -  i r - -  r'!) g* (t, rlr') g0 (/, r') dr' = N f g* (t, rir' ) q~ (t, r ') dr' ,  r - -  r'i a .  

The in tegra t ion  in the  las t  in tegra l  is c a r r i e d  out ove r  va lues  of  the rad ius  v e c t o r  r '  of the  cen t e r  of a pa r t i c l e  
such that  the point r is wi th in  that  pa r t i c l e .  Neglec t ing  t e r m s  of the  o r d e r  of  a / L  ~ t / L < <  1, one can  r e p l a c e  
~0(t, r ' )  by the  f i r s t  t e r m  of  its expans ion  in a T a y l o r  s e r i e s  about the  point  r and apply the  p a r a l l e l  t r a n s p o r t  
o p e r a t o r  to the v e c t o r  x = r - r '  f o r  the  d e t e r m i n a t i o n  of g * .  We then obtain 

< (1 - -  0) a ) = N ~  (t, r) ~ g* (t, r H- x]r) dx. (6) 
x<~a 

In a s i m i l a r  fashion,  an e x p r e s s i o n  is obta ined fo r  the condi t ional  m e a n s  ove r  the d i s p e r s e d  phase .  We have 

< ( 1 - - 0 ) G )  *----N j" q0(!, r +  x[r') g** (i, r ir ' ,r-~- x)dx. (7) 
x~a  

The in tegra t ion  h e r e  is c a r r i e d  out o v e r  the vo lume  of a p a r t i c l e  with a c e n t e r  at the  point r ( see  F ig .  1). 

Equat ions  (6) and (7) make  it poss ib le  to give a r i g o r o u s  defini t ion of the quant i t ies  p and p * in t roduced  
in Eqs .  (5), fo r  which it is suff ic ient  to se t  G =1.  In the  p a r t i c u l a r  c a s e  of comple te ly  r a n d o m  a r r a n g e m e n t  of 
p a r t i c l e s ,  the b i n a r y  d i s t r ibu t ion  funct ion can be a p p r o x i m a t e d  by the r e l a t ion  

qD(t, r;r') = q~(/, r) t i (2a--r--r ' i ) .  (8) 

In th is  ea se  the  in t eg ra t ion  in Eq.  (7) is ae tua l ly  p e r f o r m e d  only ove r  the  por t ion  of the vo lume  of  a pa r t i c l e  
with its c e n t e r  at r which is shaded in Fig .  1. We then obtain  fo r  p and p* 

p(t, r ) =  4 naSNrp(t, r ) =  4 naan(t, r), 
3 3 (9) 

p* (t, rlr') --  p (t, r) a (~), [ = ; r - -  r'/a, 

w h e r e  a is the ra t io  be tween the shaded  vo lume in F ig .  1 and the  vo lume  of a sphe re  of rad ius  a;  its dependence  
on ~ is shown in F ig .  2. 

By defini t ion,  ensemble  d i s t r ibu t ion  funct ions  a r e  independent  of r and t h e r e f o r e  the a v e r a g i n g  opera t ion  
and d i f fe ren t ia t ion  with r e spe c t  to r c o m m u t e .  F u r t h e r ,  the  t ime  sca le  f o r  de ta i led  funct ions is d e t e r m i n e d  by 
p r o c e s s e s  at the level  of  individual  p a r t i c l e s  and is t h e r e f o r e  much  l e ss  than the  t ime  sca le  f o r  the d i s t r ibu t ion  
funct ions ,  the va r i a t i ons  of which a r e  connec ted  with r eg roup ing  of a l a rge  n u m b e r  of pa r t i c l e s ,  t" T h e r e f o r e ,  
to an a c c u r a c y  of the o r d e r  of quant i t ies  which a r e  g r e a t e r  than the sma l l  ra t io  of  the t ime  sca l e s  specif ied,  
the a v e r a g i n g  ope ra t ion  is a l so  in te rchangeab le  with d i f fe ren t ia t ion  with r e s p e c t  to t ime,  i .e . ,  

/ OG \ O OG 0 
\ Or / Or <G), / \----- <G>. (10) = - -  \ at / -aF 

S i m i l a r  commutat ion re la t ions  can also be w r i t t e n  fo r  the condi t iona l  means defined in  Eqs. (3). 

This  a r g u m e n t  is inval id f o r  s y s t e m s  with f ixed p a r t i c l e s  and s t e a d y - s t a t e  flow of the continuous phase  w h e r e  
both s ca l e s  tend toward  infinity.  In this case ,  however ,  ~0(t, r) is gene ra l l y  independent  of t and the second  equa-  
t ion in (10) is sa t i s f ied  r i g o r o u s l y .  

@ 
Fig~ 1. Sketch i l l u s t r a t i ng  in tegra t ion  
in Eqso (6) and (7) and the  ca lcu la t ion  
of the funct ion a(~ ) f r o m  Eq.  (9). 

a 2 

F ig .  2. Dependence  of  a 
o n ~  . 
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We now average Eq. (1) multiplied by 0 and by t - 8  with. respec t  to the unconditional distr ibution func- 
Using Eqs.  (2)-(5) and (10), and introducing the pulsations r 0, r i :  and v0, v 1 of the detailed fields T'  and tion. 

V' with respect  to their  mean values in the respect ive phases,  we obtain 

( 0  0 ) 0 <0T,V, > (l_0)vQ)_+_eh0 ' ec~ - ~  + v~ -&r % = - -  co -~r - -  vq + < 
(11) 

(o ,  o) o 
Equations (11) descr ibe  heat t ranspor t  in flows of the continuous and dispersed phases where the t r a n s -  

port  equation for  the medium as a whole is the sum of Eqs.  (11). On the left sides appear  the ra tes  of change 
of the heat content of the mate r ia l s  in the phases per  unit volume of the medium, including convective heat 
t r anspor t  by the mean flow. The f i rs t  t e rms  on the right sides a re  the divergences of the additional heat flows 
resul t ing f rom pulsational motion. In their  significance, these "pulsational" flows a re  analogous, for  example, 
to Reynolds s t r e s se s  i n t h e  hydromechanics  of turbulent flows, but their  nature may be different depending 
upon the detailed s t ruc ture  of the medium and the pulsational mechanism.  Thus, the i r  occur rence  may be a s -  
sociated with turbulence in the d ispersed  medium, with nonuniformity of local fluid velocity in the porous space 
of a granular  bed, etc.  The vec to r  q descr ibes  the " regular"  mean heat f lux in the medium result ing f rom mo-  
lecular  thermal  conductivity including the perturbing effect of the d ispersed par t ic les  on the tempera ture  field 
in a continuous phase with a different thermal  conductivity, and the quantity < (1--0)VQ2> is the "regular"  
heat exchange between phases.  Finally, the last t e rms  on the right sides of Eqs.  (11) descr ibe  the mean in- 
tensi ty of heat sources  in the phase mater ia l s . r  

For  the de terminacy of Eqs.  (11), it is f i rs t  of all nece s sa ry  that the velocit ies v 0 and v l be known as well 
as p and other  quantities charac te r iz ing  the s t ruc ture  of the medium. In the general  case,  all these quantities 
a re  functions of t and r which a re  determined f rom a solution of the independent problem of the motion of the 
d ispersed medium or  which are  assigned a p r i o r i ;  they can be considered as known quantities in the following. 
All the remaining t e rms  on the right sides of Eqs.  (11) must  be represented  in the fo rm of functions of the un- 
known var iables  r 0 and r 1 and also of the pa ramete r s  charac te r iz ing  the strt{cture of the medium and the physi-  
cal proper t ies  of the phases .  It is apparent that the physical  models required for  such representat ion of the 
pulsational and regular  t e r m s  a re  quite different in nature and must  be considered separately.  In the following, 
we limit ourse lves  to the analysis  of the regular  t e rms ,  neglecting heat sources  for  simplici ty and assuming 
that pulsational thermal  fluxes a re  smal l .  The l a t t e r  is completely valid in the ve ry  important  case where the 
P6clet  number, which is based on the charac te r i s t i c  part icle  size a and the mean veloci ty ]v0-v l l  of the flow 
around a part icle,  is smal l  in compar ison  with one. In this case,  we have in a coordinate sys tem moving with 
a velocity v instead of Eqs.  (11) 

ec o . . . .  v q + < ( I - - O ) V Q ) ,  pc, = - -< ( I - -O)VQ >. (12) 
Ot Ot 

Using Eq. (5) and the definition of Q in Eq. (1), we have 

q = - -  <AvT > ---- - -  ~,oV'r-- 0~1-- s ( (1 - -  0) V T >. (13) 

Thus, all the unknown t e r m s  in Eqs. (12) are  means over  the d ispersed phase, which can be wri t ten in 
the form (6). In part icular ,  using the Gaussian formula,  we obtain f rom Eq. (6) 

< (1 - -  0) vT > = n (t, r) !~ ~* (t, r + xir) ndx, 
. = a  (14) 

< ( I - -0)VQ> =n(t,  r) .~ q*(t, r+x l r )  ndx, 

where the integration is per formed over  the surface of a part icle  with its center  at r .  Consequently, Eqs. (12) 
will be closed if the mean t empera tu re  and the mean heat flux on the surface of an individual part icle  are  known. 

In o rde r  to determine the quantities mentioned, it is neces sa ry  to consider  the problem of the mean pe r -  
turbat ions  introduced into the mean tempera tu re  fields o f  the phases by a tes t  part icle  with a fixed location in 
the sys tem.  It is c lear  that the mean tempera tu re  within a par t ic le  sat isf ies the usual one-phase equation of 

TNote that h 0 and h 1 also contain t e r m s  depending on T'  in the case where H depends on tempera ture ,  andthis  
dependence is nonlinear.  
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t he rma l  conductivity. Equations for  the fields T~ and ~-~ outside a part icle  are  obtained af ter  averaging Eq. 
(1} multiplied by 0 o r  1 - 0  ; proceeding as in the derivation of Eqs.  (11) and (12), for  small  P6clet  numbers  and 
H =0, we obtain in place of Eqs.  (12) and (13) 

6% 0~* Ot - - - v q *  + ( (1--O)vO} *' 
(15) 

p*e 1 ~ = - - ( ( 1 - - 0 )  vQ}*, q*=--~0V x * - ( ~ l - ~ . 0 ) ( ( 1 - 0 ) V  T ) *  

The usual conditions for  continuity of t empera tu re  and of the normal  component of the heat flux must be sa t i s -  
fied at the surface  of the test  par t ic le .  The conditional means over the d ispersed phase appea r ing inEqs .  (15} 
a re  expressed  through conditional means of higher o rder  in accordance  with Eq. (7). 

The determinat ion of the la t ter  means requires  a solution of the problem of the mean perturbat ions in- 
t roduced by two fixed par t ic les ,  which can easi ly be formulated in analogy with the problem of a test  par t ic le .  
In this problem, t e r m s  appear  which a re  expressed  through the t empera tu re  fields averaged over  configura-  
tions in which the positions of three  par t ic les  are  known beforehand. Continuing such a proeess ,  we obtain an 
infinite (N>> 1) chain of in ter re la ted  problems for  many par t ic les .  It does not seem possible to solve all these 
problems,  and there  then a r i ses  the problem of cutoff and c losure  of this chain, which is completely analogous 
to such problems in the s tat is t ical  physics of fluids or  in the s tat is t ical  theory  of turbulence.  

The s implest  vers ion  of c losure,  which was d iscussed in [10] in part ieular ,  was based on the following 
eonsiderat ions.  Because of the l ineari ty of the equations of thermal  conductivity, the quantities ( (1--0)VT } 
and ( (1--0)X7Q } must depend l inearly on the t empera tu res  ~- 0 and ~- 1. The f i r s t  of these quantities is a vector  
and, consequently, must  be expressed  in the form of a l inear  combination of the vee tors  VT 0 and Vr 1, whieh 
mere ly  define selected direct ions in the sys tem.  The second quantity, which descr ibes  the mean  heat t r a n s -  
fe r  behveen phases,  must  go to ze ro  under s teady-s ta te  conditions where 1- 0 = ~1. Considering fur ther  that both 
these quantities a re  proport ional  to the concentrat ion of the d ispersed phase, we then obtain the relations 

( (1 --0)  vT > = PF(v%, VZl), < (1 --0)VQ } = p(I) (%, T1), (16) 

where F and r a re  cer ta in  previously  unknown functionals which are  linear with respect  to the i r  arguments .  
The hypothesis leading to the c losure  of the t e s t -pa r t i c l e  problem consists  of an assumption that the conditional 
means / (1 - -0 )vT  > * and < (t - -  0) VO } * are  expressed  through ~-~ , ~-~ , and the volumetr ic  concentrat ion p* 
of the d ispersed phase in the neighborhood of the test  part icle  by means of the same funetionals F and ~, i.e., 

< (1 - -  0) vT > * := o*F (VT~, VZ~), < (1 - -  0) VQ } *= ,o** (~, z~). (17) 

The actual solution of the t e s t -pa r t i c l e  problem which is closed by Eqs. (17) and the a pos ter ior i  de ter -  
mination of the form of these functionals f rom a ' compar i son  of Eqs.  (16) and (14) is ext remely  laborious in 
the general  case but can be ca r r i ed  out in various par t icu lar  situations. An example of the solution of this prob-  
lem under s teady-s ta te  conditions for  a medium with an a r b i t r a r y  par t ic le  concentrat ion as well as a study of 
the nonsteady-s ta te  problem for  dilute d ispersed media will be discussed in subsequent papers .  

NOTATION 

AN, configuration of a sys tem of N par t ic les ;  a, par t ic le  radius; C, c, heat capacit ies per unit volume; 
F,  functional in Eqs.  (16) and (17); G, g, a rb i t r a ry  detailed function and its mean; H, h, intensities of internal 
heat sources ;  L, l ,  macroscopic  and microscopic  l inear scales;  N, total  number of part icles;  n, calculated 
par t ic le  concentration; n, unit normal  vector;  Q, q, thermal  fluxes; r(i), radius vector  of the center  of the i-th 
part icle;  T, local tempera ture ;  V, v, local and mean velocit ies;  ~, volumetr ic  concentrat ion of continuous phase; 
~?, Heaviside function; 0 ,  s t ruc ture  function; A, ~,, thermal  conductivitles; ~, variable in Eq. (9); p,  volumetr ic  
concentrat ion of d ispersed phase; a ,  function in Eq. (9); f ,  mean tempera ture ;  r  functional in Eqs. (16) and 
(17); (p, distribution function. Indices:  0, 1, continuous and dispersed phases,  respect ively;  as ter isk,  condi- 
tional means.  
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